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ABSTRACT

The geographic profiling problem is to create an operationally
useful estimate of the location of the home base of a serial
criminal from the known locations of the offense sites. We
have developed and released new software based on Bayesian
methods that attempts to solve this problem. In this paper,
we discuss some of the geographic and computational chal-
lenges in implementing this new method.
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J.4 [Computer Applications]: Social and Behavioral Sci-
ence—sociology; G.3 [Mathematics of Computing]: Prob-
ability and Statistics—statistical computing; 1.6 [Computing
Methodologies|: Simulation and Modeling—applications

General Terms
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1. INTRODUCTION

The geographic profiling problem is the problem of estimat-
ing the location of the home base of a serial offender from the
known locations of the crimes in the series. At its core this is
an operational problem for police agencies and it lies at the
intersection of geography, criminology, mathematical model-
ing and computation. We will describe a new mathematical
approach that we have developed for the geographic profil-
ing problem [9]; moreover we have developed and released
prototype software that implements those new methods. In
this paper, we will discuss the details of how that theoretical
framework was implemented with particular focus on the ge-
ographic and computational questions that arose with that
method.

In the geographic profiling problem, an analyst is presented
with the locations of a series of linked crimes presumably

committed by the same offender. The analyst’s goal is to
construct an estimate for the likely location of the offender’s
anchor point. The anchor point may be the offender’s resi-
dence, but it may also be some other location of importance
to the offender- the residence of a friend or relative, a place
of employment, or even a favorite bar or hangout.

There are a number of existing methods for the geographic
profiling problem. One category are called spatial distri-
bution strategies, following the terminology of [13]. These
techniques produce a point estimate of the offender’s an-
chor point through an estimate of the center of the crime
series. One common spatial distribution strategy is to es-
timate the anchor point with the centroid (mean center) of
the locations of the crime sites. A second strategy is to use
the center of minimum distance. This point, also called the
Fermat-Weber point, is chosen so that the sum of the dis-
tances from this point to the crime sites are at a minimum.
This can be calculated iteratively via for example Weiszfeld’s
algorithm [3].

A second class of approaches are called probability distance
strategies. These are the methods that have been imple-
mented in the commonly used software tools that are cur-
rently being used by police agencies. To describe these meth-
ods, let us first fix some notation. We assume that the crime
series consists of n linked crimes, and that these have taken
place at the locations x1, X2, ...,X,. The offender’s anchor
point will be denoted by z. To craft a probability distance
strategy, we need to make two selections- a distance function
d and a decay function f. There are a number of reasonable
choices for the distance function d; two of the most common
choices are the Euclidean distance and the Manhattan dis-
tance. For points x = (z),2®) in the plane, Euclidean
distance d2(x,y) is given by

da2(x,y) = /20—y + 2@ — y@)|2
while the Manhattan distance di(x,y) is given by
di(x,y) = [ =y + 2P —y@).

The decay function f is used to model the relationship be-
tween the locations of the crime sites and the location of
the offender’s anchor point. There are a number of common
decay functions in common use, including linear, normal,
lognormal, and negative exponential; see [6, Chp. 10] for a
discussion.

With a distance function d and a decay function f selected,



a probability distance strategy then calculates a hit score
S(y) for each location y by summing

S(y) = Z fld(xi,y)).

In effect, the hit score is found by placing a copy of the
function y — f(d(xs,y)) on each crime site x; and then
summing the result. Regions with a high hit score are con-
sidered to be more likely to contain the offender’s anchor
point than regions with a low hit score.

Rossmo [11, Chp. 10] recommends the use of a Manhattan
distance metric with a particular algebraic distance decay.
Canter, Coffey, Huntley and Missen in [1] used a Euclidean
distance metric and evaluated a family of distance decay
functions modeled after negative exponentials. Ned Levine’s
CrimeStat program [6] allows for varying distance metrics
and varying distance decay functions.

Though helpful, none of these approaches has been truly
successful. Indeed, the National Institute of Justice [8]says

“Though there have been anecdotal successes with
geographic profiling, there have also been sev-
eral instances where geographic profiling has ei-
ther been wrong on predicting where the offender
lives/works or has been inappropriate as a model.”

See also Paulsen’s analysis [10]. One of the issues with these
existing methods is that none is able to truly incorporate
geography in a meaningful way. To that end, a number
of new approaches have since been developed for the geo-
graphic profiling problem, including the Bayesian journey
to crime approach of Levine [6] and the technique of Mohler
and Short [7] that begins with a kinetic model of offender
behavior. In [9] we presented our new method based on
Bayesian methods.

2. OUR BAYESIAN MODEL

We begin by modeling offender behavior; in particular we
start with the assumption that an offender with anchor point
z will commit a crime in the series at the location x with
probability density P(x|z). This approach however, does
not allow for the possibility that different offenders have dif-
ferent relative mobility. To correct for this, we assume that
each offender has an average distance « that they are willing
to travel to offend so that the appropriate probability den-
sity is P(x|z, a). In this approach a young teenager without
a driver’s license would have a smaller value of the aver-
age offense distance o than an older offender who was very
familiar with the area.

If we then assume that locations in the series are selected
independently, we find that the probability density that the
offender selects the locations x1, X3, ...,x, for the series is
precisely

n

S Xn|z,a) = H P(xi|z, o).

i=1

.P(X1,X27 .

Bayes theorem then gives us the expression for the proba-

bility density of the offender’s anchor point

P(z)cx/ooo

were 7(«) is the prior distribution for the average offense
distance of « throughout the population and H(z) is the
prior distribution of anchor points. We have assumed that
these priors are independent and we have marginalized over
Q.

H P(xi|z, a)} H(z)7(cx) dox (1)

To complete our model, we need to specify our form for
P(x|z,a). We certainly expect that there is a distance de-
cay component to this probability, so we start with the sup-
position that

P(x|z,a) x D(d(x,2), a) (2)

for some decay function D. However, to incorporate the im-
pact of geography on target selection, we also suppose that
that there is a function G(x) that represents the attractive-
ness of a target at x, and so suppose that

P(x|z,a) x G(x). (3)

In particular, if G(x) = 0, we are assuming that the offender
cannot offend at x; this lets us account for regions where
offenses are impossible- e.g. you cannot have a residential
burglary in a body of water. Larger values of G(x) indicate
areas where offenses are more likely.

Combining (2) and (3), we obtain the expression
P(x|z,a) = D(d(x,2z),a)G(x)N(z, a) (4)

where the normalization N (z, a) satisfies

N(z,0) = U/D(d(x,z),a)e(x) dz® dz® - (5)

and is chosen to ensure that P(x|z, ) represents a proba-
bility distribution.

Thus (1), (4) and (5) together give us a theoretical expres-
sion that can be evaluated to estimate the geographic regions
where the offender’s anchor point is most likely. To do so,
we will need to specify how to measure each of the quanti-
ties that appear above. A more thorough discussion of the
theoretical background for this model can be found in [9]. In
this paper, we want to discuss the geographic and compu-
tational issues that arise when trying to convert this theory
into a practical tool.

3. DISTANCE AND DISTANCE DECAY

To convert this theoretical framework into a practical tool,
we must begin by selecting a common framework for place
and distance. To do so, we will represent points by their
latitude and longitude using the same reference datum as the
U.S. Census. Then, to measure distance between points x =
(2™, 2®) and y = (y,y®@) where the first coordinate is
longitude and the second is latitude, we can use the great-
circle distance

d(x,y)

= 2sin"* \/sin2 (#) + cos w2 cos Y2 sin? <%>




Notice that the result of d is an angle; this is the central angle
between the two rays from the center of the earth to the two
points on the surface. It can be converted to approximate
distance in miles by ensuring that d is measured in radians
and then multiplying by the radius of the earth in miles. It
should be noted that this approximation to the straight line
distance does not account for features like elevation changes
or the deviation of the surface of the earth from a sphere.

As yet there is no consensus on the best or correct form
for the distance decay behavior of serial offenders; see for
example [2, 5, 6]. We select a bivariate normal distribution
for D, and assume that

D(d(x,72),a) = é e (~ o dx2)?) . (6)

We can also examine the probability density for the distances
traveled; as a function of « it has the density

2a da?

frle) = 2mrD(dx2).0) = T (<15) (@)

where r = d(x, z) is the travel distance. Note that f(r|a) is
simply the the probability density that one of the sites at a
distance r would be chosen namely D(r, o) = D(d(x,2z), a),
multiplied by the number of sites at a distance r namely
27tr, which is the circumference of a circle of radius r. As a
consequence, we see that the distribution of distances follows
a Rayleigh distribution in the distance r.

With D(d(x,z),c) chosen, we need to construct an esti-
mate for m(a), which is the prior estimate for the distribu-
tion of average offense distances. It is fundamental to note
that this is the distribution of the average offense distances
across offenders. In particular, though this is related to the
distribution of offense distances across offenses (obtained for
example by examining crime statistics) the distribution here
is across people.

To perform this estimation, let us first assume that we know
that the distribution of distances from home to offense sites
across known offenses is given by the function A(r). Prac-
tically, we are unlikely to know the exact form of the dis-
tribution A(r), but we can estimate it from crime statistics.
Indeed, let us suppose that we have a sample of S solved
crimes, and that the distance from offense site j to the cor-
responding offender anchor point is p;.

Choose a discretization size € > 0, then define r; = je and
r; = (j — 3)€, to subdivide the real axis into a sequence of
bins [rj_1,7;) each with center r}. To estimate the value of
A in the center of bin [r;_1,7;), namely A(r}), we let a; be
the number of distances p; in this bin,

a; = #{s|rj—1 < ps <715} (8)
Then we have the relationship

i
A(rp)e ~ -2 9
(ri)e~ 2 (©)

where both sides of approximate the probability that p lies
in the bin [rj_1,7;).

Returning to our estimate of 7(a), we begin with the fun-

damental relationship

A(r) = ./000 flrja)m(a) da (10)

which states that the number of offenses at the distance r
can be found by by multiplying the probability density that
an offender with average distance to offend a chooses the
offense distance r by the probability density that an offender
actually has the offense distance «, and then integrating
over all possible values of a. In particular, this accounts for
two sources of variation- the variation in offense distances
selected by one offender, and the variation in average offense
distances across multiple offenders.

We know that offenders do not travel infinite distances to
offend, so we choose a number N so large that A(r) ~ 0 for
r > eN; then we want to choose 7(a) so that

Ar) = / " 10 o)) da

for j = 1,2,...,N. The assumption A(r) =~ 0 for r > eN,
also lets us conclude that 7(a) ~ 0 for @ > eN. Indeed,
A(r) is the measured number of crimes that occur at the
distance r from the anchor point, while 7(r) is the density
of offenders whose average offense distance is r.

To evaluate the integrals, define ay = ke, af = (k — 1)e,
and apply the midpoint rule to the integral

eN

/000 flrla)m(a) da flrla)m(a) da

X
S—

%

Z frlag)m(ag)e + O(e%).

k=1

Thus, for each j, k € {1,2,..., N}, we have

N

N
aj =S¢y f(rilak)m(ak)

k=1
e G (U3
=73 kz:l(k_%)z p( 4(k—%)2) (ak).

Thus, if we define the matrix
mSe (j—%) W(j_%)2
G=Gy =2V "3/ M3
ik D) (k_%)Qexp 4(k—%)2
and the vectors

a=(ai,az,...,an) (11)
7w = (m(al),m(az),...,m(an)) (12)
then we obtain the discrete linear system

a=Gr. (13)

Unfortunately, this linear system is ill-posed; this is a conse-
quence of the fact that integral equations of the form (10) are



Figure 1: The vector a calculated from residential
burglaries in Baltimore County, where N = 180 and
e = 0.002.

themselves ill-posed. To proceed, we will instead apply Tik-
honov regularization [4, 15]. A solution to the equation (13)
can be thought of as the vector  that minimizes ||Gr —al|?;
the idea in Tikhonov regularization is to instead minimize

La(m) = |Gm — a]|* + Allx||*. (14)

As a consequence, the Tikhonov regularized solution is cho-
sen to balance out the error obtained by fitting 7 to the
(noisy) data (the term |G — a||?) with an estimate of the
size of 7 (the term A||x||?).

If one graphs the value of log ||Gm — al| versus log ||7|| as A
varies for the minimizer in (14), one obtains a graph that
has the general shape of an ‘L’. Indeed, for small values of
A the ill-posedness of the problem implies that the size of
||| grows rapidly, while for large A the solution is unable to
accurately fit the data, and so ||Gm — a|| grows rapidly. We
choose the value of A nearest to the vertex of the ‘L’, i.e.
the point of maximum curvature; this is called the ‘L’-curve
method.

To illustrate this, let us apply this method to residential
burglaries in Baltimore County. We have a data set of 5863
solved residential burglaries for the county covering the pe-
riod 1991-2008. If we select ¢ = 0.002 as our bin size, and
choose N = 180 bins, then the graph of the vector a appears
in Figure 1

Attempting to solve the linear system directly leads to the
wildly oscillatory solution seen in Figure 2, while the Tikho-
nov regularized solution gives the results in Figure 3. The
minimization in the Tikhonov regularization (14) was taken
over vectors m with all nonnegative entries; because m comes
from a probability density, we know a prior: that the com-
ponents must be nonnegative.

4. TARGET ATTRACTIVENESS

One potentially reasonable approach to estimating the rel-
ative attractiveness of different targets would be to iden-
tify geographic and demographic variables that are corre-
lated with the crime type under consideration. Interestingly,

111111
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Figure 2: Attempt to directly solve (13) using the
pseudo-inverse; the known data a is calculated from
residential burglaries in Baltimore County, while
N =180 and ¢ = 0.002.

0 50 100 150 200

Figure 3: Tikhonov regularized solution with non-
negative entries to estimate mw, plotted using data
from Baltimore County residential burglaries. Here
N =180 and € = 0.002.

Tseloni, Wittebrood, Farrell and Pease [14] compared geo-
graphic features that influenced burglary rates across three
different countries (Britain, the U.S., and the Netherlands).
Though the effect of some variables on crime rates appeared
consistent across the different nations, there were some vari-
ables that were significant in different nations, but in oppo-
site directions. For example, increased household affluence
indicated higher burglary rates in Britain, while it indicated
lower burglary rates in the U.S. This suggests that this ap-
proach may not prove fruitful without a significant study of
the particular crime in the particular jurisdiction where the
series is being investigated- a rather high hurdle.

Our approach then, is to move away from techniques that
try to predict regions of higher or lower crime likelihood in
favor of simply measuring observed behavior. In particu-
lar, an officer investigating a series of crimes needs to begin
with a representative sample of historical crimes of the same



type as the series under consideration; let us suppose that
these have occurred at the locations ci,ca,...,cap. Though
these locations are just a sample, they are likely to be con-
centrated in areas that are likely crime sites; thus we want
G(x) to be large in regions where crimes are common while
G (x) should be small where crimes are uncommon. To con-
vert this sample into a density defined everywhere, we apply
kernel density parameter estimation [12]. In particular, we
start with the family of quartic kernel functions K (x|\) with
bandwidth A\ given by

3
m(|x|2

0 if [x| > A.

— A% f x| <A,
K(x|\) =

Notice that [[ K (x|\)dz™ dz® =1 for all \, while the ra-
dius of the region where K is nonzero is exactly A\. Then we
can construct an approximation of our target attractiveness
by calculating

N

Gx) =) K(x—cl))

i=1

for any choice of bandwidth A. The question of the optimal
selection of the bandwidth parameter A\ remains open.

5. ANCHOR POINT DENSITY

We also need to construct a method to estimate the prior
distribution of offender anchor points before we account for
the precise details of the crime series. Our approach is to
start with the supposition that the local density of offender
anchor points is proportional to the local population density.
The advantage of this approach is that block-level popula-
tion data is available directly from the U.S. Census. Another
reasonable approach would be to start with the locations of
the anchor points of historically identified offenders and pro-
ceed via kernel density parameter estimation as was done
target attractiveness.

If we want to use the U.S. Census data, we need to convert
the block level data into an appropriate distribution H(z).
One approach would be to let H(z) be defined piecewise,
with the value on each block equal to the population den-
sity of that block. Though this most closely matches the
available data, it runs into the modifiable areal unit prob-
lem. A related issue is that the results, when presented to
the investigating officer need to be presented in the form of a
map. If the resolution of the underlying map is comparable
to the size of a block, then the piecewise nature of the block
level data may result in discretization errors.

As an alternative, we choose a modification of the kernel
density parameter estimation process, and define

Npiocks
H(z) = =piK(z — qi|VAi)

i=1

where each block has population p;, center q; and for each
block we have chosen a different bandwidth equal to the side
length of a square with the same area A; as the block. This
has the effect of smoothing out the population density from
one block into neighboring points.

6. GEOGRAPHY

The next fundamental problem is determining how we want
to represent the underlying geography in our code. Because
we are representing points by their longitude and latitude,
our geographic region is just a small subset of the plane.
We then subdivide this portion of the plane into a family of
equilateral triangles with common circumradius and disjoint
interiors.

The circumradius of these triangles then determines the
smallest spatial scale that our code can resolve. Moreover,
because we know that both population density and target
attractiveness vary rapidly over scales as small as the diame-
ter of a Census block, we know that this circumradius cannot
be significantly larger that this value. On the other hand,
this presents a significant computational hurdle, as halving
the circumradius will quadruple the number of triangles in
the mesh, and hence quadruple the amount of computation.

To address this issue, we instead use two triangular meshes,
a coarse grid and then a fine refinement of this mesh. This
approach allows us to precompute values like G(x) and H(z)
once and only once, and to store these values for each ele-
ment of the fine mesh. On the other hand, when evaluating
the normalization integral (5), we can use only those el-
ements of the fine mesh that are most significant for the
computation; less significant elements can be approximated
by the corresponding element in the coarse mesh, while the
least significant elements can simply be ignored.

7. NORMALIZATION

The normalization function N(z,«) is defined by (5); for
simplicity in exposition, we start by considering the inverse

I(Z,a):// D(d(x,2),0)G(x) de™M dz'®.  (15)

This integral is a challenge to evaluate numerically; to do
S0, we begin with our coarse mesh A of equilateral triangles
with disjoint interiors. Then we rewrite the integral above

Jf Pt .ote st s
> //T é exp <—ﬁd(xv Z)2> G(x) dz™ dz®.

TeA

Using the midpoint method, we then obtain the approxima-
tion

[ paee.). 00600 s s

~ 3—\/§ L Z R exp <—Ld(xT,z)2) G(x1)
TeA

16 a2 402

where Rt is the circumradius and xr is the centroid of the
triangle T

If the triangle T' € A satisfies d(x7,2z) > 3«, then

exp (—éd(){jy z)2) < e 9% % 0.000851;

for this reason we ignore such triangles in our approximation.
On the other hand, for triangles T € A that satisfy 2a <



d(xr,2z) < 3a, we only have

exp (—éd(x:mz)Q) <e " ~0.0432
so we will retain all of these triangles. Because the largest
contribution to the integral comes from the remaining tri-
angles for which d(xr,2z) < 2«, each of these triangles will
then be subdivided into their fine triangles before the sum
is evaluated.

Although we have outlined how we are able to evaluate the
integral I(z, a), we do not want to do so for every potential
value of z. Indeed, because we merely need to generate a
map of the result to present to the analyst, it is sufficient
to simple evaluate P(z) and hence I(z|a) for points z that
are the centroids of triangles in the fine mesh. However, this
turns out to be impractical, as the computation time to eval-
uate I(z]a) even once is significant. Testing has shown that
this process, simplified as it was in the previous discussion,
is still by far the most computationally expensive portion of
the algorithm.

Rather than use this algorithm at the centroid of every fine
triangle, we would like to use this method only to calculate
the values of I(z|a) on the vertices of the coarse triangles
and interpolate into the fine triangles within. Unfortunately,
the approximation of I(z,«) by linear interpolation within a
coarse triangle does not always produce reasonable results;
in fact the accuracy of the approximation deteriorates as
a | 0.

Recall that « is the average distance the offender is willing
to travel and that the dependence on z of the integrand is
through (6). Examining this, we see that if z; and 2, are far
apart relative to «, then d(x,z1)/a and d(x,z2)/a are very

different, and so I(z1,«) and I(z2, ) are likely different.

To proceed, we write the integral as
mlx—z M) g
1(z // ( — G(x)dz""dx
Set £ = %(x — z), then d¢ = ﬁdx so
I(z,a) = // exp(—m|€]*)G(z + 20€) d€.
From this we can clearly see that I(a) — G(z) as a | 0.

Continuing our analysis, we can replace G by its Taylor se-
ries; then

1z,0) = [[ ew(-nie) {6t

+2a DG(2) - € + 4a2¢ T D*G(2)€ + O(as)} de.
Note that the second term vanishes; indeed
[[ exvt-rielp6(a) ¢ de
27 oo 2
= / / e " |DG(z)|r cosf - rdrdf =0
JO JO

where 6 is the angle measured from the direction %.

Thus, we can write

I(z,a) ~ G(z) + ca(z)a” + O(a?)

for small c.

With this in mind, we wish to approximate I(z,«) for a
near 0 by interpolation. We suppose that we already have
approximations for I(z,a) for a = a1 < a2 < --- < an,
but that the accuracy of the approximations diminishes as
a 0.

We begin by choosing K so large that our approximations
are reasonable at «y, for k > K. In particular, we choose K
so large that aj > 2R, where R is the circumradius of our
coarse triangle. For each fixed z we then use the Hermite
approximation I(z, ) =~ 1(a) where

() = wo +wi (o — ax) +wala — ax)? + wsa(a — ax)?
so that
(@) = w1 + 2wa(a — ax) + ws(a — ax)? + 2wsa(a — ax).
The coefficients wo, w1, w2 and ws are chosen so that

¥(0) = I(z,0) Ylax) = I(z,ax)

V) = 2@ Wlax) = (s ax)
From our Taylor series approximations near o = 0, we con-
cluded
oI
da
The value of I(z,ax) we have from our approximations,
while we use

1(z,0) = G(z) (z,0) = 0.

8—(Z706K) ~ I(z,ax+1) — I(z7oz;<)‘
« AK+1 — QK

8. THE COMPLETED PROGRAM

We have completed and released prototype software that
implements these methods; the tool is currently undergoing
efficacy testing.

To illustrate the use of the program, we have applied it to
a sequence of convenience store robberies that occurred in
Baltimore County. There were six elements in the series;
but the first, fourth and sixth crime in the series all occurred
at the same location. We have presented the result of our
algorithm in Figure 5; the crime location that is multiply
labeled is the location of the multiple offenses.

In contrast to the spatial distribution strategies, our ap-
proach does not produce a single point estimate for the of-
fender. We also notice that the regions that the algorithm
predicts are most likely to contain the offender are not cen-
tered around the geographic center of the crime locations.
Rather, it is skewed towards the east- that is it is skewed
towards Baltimore City and away from the less populated
suburbs.

Another reason that the search area is skewed towards Bal-
timore City is that the data in our series contains only the
known crime locations from the Baltimore County police.
Baltimore County and Baltimore City have separate police
departments, and we only have the data from the County.



Figure 5: The result of applying this method to a series of convenience store robberies in Baltimore County.
[The boundary between the county and the city can be seen in the figure as a north-south line that turns to
a northwest-southeast line in the southeastern portion of the figure.]
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Figure 4: Screenshot of the prototype software.

In particular, this means that the offender may have com-
mitted additional crimes in the series inside Baltimore City,
but they are unknown to us. Through the target attrac-
tiveness G(x), the algorithm is able to recognize that, if the
offender wanted to commit an offense that we would know
about, then it would have to take place in the county. Thus,
it stands to reason that the offender is more likely to have
an anchor point closer to the city where crimes would not
be known to us, than in the suburbs where we know the
offender does not have any other series elements.

We also note that our method is able to account for a num-
ber of the salient features of the local geography. Indeed,
unlike a probability distance strategy, the proposed search
area rates commercial areas near the crime site quite low,
and avoids the large park inside the city. Instead it gives
high ratings to regions near major streets with significant
population.
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